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Executive Summary 
Climate change is expected to increase the occurrence of most climate-related natural hazards. 
This report addresses how climate change is expected to influence eleven climate-related natural 
hazards or risks categorized with very high, high, medium, and low confidence levels.  
 
The risks of heat waves are projected to increase with very high confidence due to strong 
evidence in published literature, model consensus, and robust theoretical principles for continued 
increasing temperatures. The majority of risks expected to increase with climate change have 
high or medium confidence due to moderate to strong evidence and consensus, yet they are 
influenced by multiple secondary factors in addition to increasing temperatures. Risks with low 
confidence, while important, show relatively little to no changes due to climate change or the 
level of evidence is limited. The projected direction of change, along with the level of confidence 
in the direction of change for each climate change-related natural hazard or risk, is summarized 
in Table 1. The full report describes the projected changes for each climate metric representing 
the natural hazard (see Table 2). 
 
Table 1 Summary of projected direction of change along with the level of confidence in climate change-related risk of 
natural hazard occurrence. Very high confidence means all models agree on the direction of change and there is strong 
evidence in the published literature. High confidence means most models agree on the direction of change and there is 
strong to medium evidence in the published literature. Medium confidence means that there is medium evidence and 
consensus on the direction of change with some caveats. Low confidence means the direction of change is small compared 
to the range of model responses or there is limited evidence in the published literature. 
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This report presents future climate projections for Umatilla County relevant to specific natural 
hazards for the 2020s (2010–2039 average) and 2050s (2040–2069 average) relative to the 1971–
2000 average historical baseline. The projections were analyzed for a lower greenhouse gas 
emissions scenario as well as a higher greenhouse gas emissions scenario, using multiple global 
climate models. This Executive Summary lists only the projections for the 2050s under the 
higher emissions scenario. Projections for both time periods and both emissions scenarios can be 
found within relevant sections of the main report.  

Heat Waves 
Extreme heat events are expected to increase in frequency, duration, and intensity due 
to continued warming temperatures. 
In Umatilla County, the frequency of hot days per year with temperatures at or above 
90°F is projected to increase on average by 29 days, with a range of about 11 to 41 
days, by the 2050s under the higher emissions scenario relative to the historical 
baselines. This average increase represents a more than doubling of hot days relative to 
the average historical baseline. 
In Umatilla County, the temperature of the hottest day of the year is projected to 
increase on average by nearly 8°F, with a range of about 3 to 11°F, by the 2050s under 
the higher emissions scenario relative to the historical baselines. 

Cold Waves 
Cold extremes are still expected to occur from time to time, but with much less 
frequency and intensity as the climate warms. 
In Umatilla County, the frequency of cold days per year at or below freezing is 
projected to decrease on average by 11 days, with a range of about 5 to 17 days, by the 
2050s under the higher emissions scenario relative to the historical baselines. This 
average decrease represents a future with a little more than half as many cold days per 
year as in the average historical baseline.  
In Umatilla County, the temperature of the coldest night of the year is projected to 
increase on average by about 9°F, with a range of about 0 to 17°F, by the 2050s under 
the higher emissions scenario relative to the historical baselines. 

Heavy Rains 
The intensity of extreme precipitation events is expected to increase in the future as the 
atmosphere warms and is able to hold more water vapor. 
In Umatilla County, the frequency of days with at least ¾” of precipitation is not 
projected to change substantially. However, the magnitude of precipitation on the 
wettest day and wettest consecutive five days per year is projected to increase on 
average by about 19% (with a range of 7% to 39%) and 14% (with a range of -1% to 
32%), respectively, by the 2050s under the higher emissions scenario relative to the 
historical baselines. 
In Umatilla County, the frequency of days exceeding a threshold for landslide risk, 
based on 3-day and 15-day precipitation accumulation, is not projected to change 
substantially. However, landslide risk depends on a variety of factors and this metric 
may not reflect all aspects of the hazard. 



	

	 3 

River Flooding 
Mid- to low-elevation areas in Umatilla County’s Blue Mountains that are near the 
freezing level in winter, receiving a mix of rain and snow, are projected to experience 
an increase in winter flood risk due to warmer winter temperatures causing 
precipitation to fall more as rain and less as snow. 

Drought 
Drought conditions, as represented by low summer soil moisture, low spring 
snowpack, low summer runoff, and low summer precipitation are projected to become 
more frequent in Umatilla County by the 2050s relative to the historical baseline.  
By the end of the 21st century, summer low flows are projected to decrease in the Blue 
Mountains region putting some sub-basins at high risk for summer water shortage 
associated with low streamflow.  

Wildfire 
Wildfire risk, as expressed through the frequency of very high fire danger days, is 
projected to increase under future climate change. In Umatilla County, the frequency of 
very high fire danger days per year is projected to increase on average by about 40% 
(with a range of -14 to +101%) by the 2050s under the higher emissions scenario 
compared to the historical baseline. 

Air Quality 
Under future climate change, the risk of wildfire smoke exposure is projected to 
increase in Umatilla County. The number of “smoke wave” days—days with high 
concentrations of wildfire-specific particulate matter—is projected to increase by 141% 
and the intensity of “smoke waves” is projected to increase by 82% by 2046–2051 
under a medium emissions scenario compared with 2004–2009. 

Windstorms 
Limited research suggests very little, if any, change in the frequency and intensity of 
windstorms in the Pacific Northwest as a result of climate change.  

Dust Storms 
Limited research suggests that the risk of dust storms in summer would decrease in 
eastern Oregon under climate change in areas that experience an increase in vegetation 
cover from the carbon dioxide fertilization effect.  

Increased Invasive Species Risk 
Warming temperatures, altered precipitation patterns, and increasing atmospheric 
carbon dioxide levels increase the risk for invasive species, insect and plant pests for 
forest and rangeland vegetation, and cropping systems. 

Loss of Wetland Ecosystems 
Freshwater wetland ecosystems are sensitive to warming temperatures and altered 
hydrological patterns, such as changes in precipitation seasonality and reduction of 
snowpack. 
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Introduction 
Industrialization has given rise to increasing amounts of greenhouse gas emissions worldwide, 
which is causing the Earth’s climate to warm (IPCC, 2013). The effects of which are already 
apparent here in Oregon (Dalton et al., 2017; Mote et al., 2019). Climate change is expected to 
influence the likelihood of occurrence of existing natural hazard events such as heavy rains, river 
flooding, drought, heat waves, cold waves, wildfire, air quality, and coastal erosion and flooding. 
Oregon’s Department of Land Conservation and Development (DLCD) contracted with the 
Oregon Climate Change Research Institute (OCCRI) to perform and provide analysis of the 
influence of climate change on natural hazards. The geographic scope of this analysis is Umatilla 
County. This report is funded through the Hazard Mitigation Grant Program (HMGP) grant that 
DLCD received from FEMA. Outcomes of this analysis include county-specific data, graphics, 
and text summarizing climate change projections for climate metrics related to each of the 
natural hazards listed in Table 2. This information will be integrated into the Natural Hazards 
Mitigation Plan (NHMP) updates for Umatilla County, and can be used in other county plans, 
policies, and programs. In addition to the county reports, sharing of data, and other technical 
assistance will be provided to the counties. This report covers climate change projections related 
to natural hazards within Umatilla County.  
Table 2 Natural hazards and related climate metrics evaluated in this project. 
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Future Climate Projections Background 
Introduction 
The county-specific future climate projections prepared by OCCRI are derived from 10–20 
global climate models (GCM) and two scenarios of future global greenhouse gas emissions. 
Future climate projections have been “downscaled”—that is, made locally relevant—and 
summaries of projected changes in the climate metrics in Table 2 are presented for an early 21st 
century period and a mid 21st century period relative to a historical baseline. (Read more about 
the data sources in the Appendix.) 

Global Climate Models 
Global climate models are sophisticated computer models of the Earth’s atmosphere, water, and 
land and how these components interact over time and space according to the fundamental laws 
of physics (Figure 1). GCMs are the most sophisticated tools for understanding the climate 
system, but while highly complex and built on solid physical principles, they are still 
simplifications of the actual climate system. There are several ways to implement such 
simplifications into a GCM, which results in each one giving a slightly different answer. As 
such, it is best practice to use at least ten GCMs and look at the average and range of projections 
across all of them. (Read more about GCMs and uncertainty in the Appendix.) 
 

 

Greenhouse Gas Emissions 
When used to project future climate, scientists give the GCMs information about the quantity of 
greenhouse gases that the world would emit, then the GCMs run simulations of what would 
happen to the air, water, and land over the next century. Since the precise amount of greenhouse 
gases the world will emit over the next century is unknown, scientists use several scenarios of 
different amounts of greenhouse gas emissions based on plausible societal trajectories. The 
future climate projections prepared by OCCRI uses emissions pathways called Representative 

Figure	1	As	scientific	understanding	of	climate	has	evolved	over	the	last	120	years,	increasing	amounts	of	
physics,	chemistry,	and	biology	have	been	incorporated	into	calculations	and,	eventually,	models.	This	figure	
shows	when	various	processes	and	components	of	the	climate	system	became	regularly	included	in	scientific	
understanding	of	global	climate	calculations	and,	over	the	second	half	of	the	century	as	computing	resources	
became	available,	formalized	in	global	climate	models.	(Source:	science2017.globalchange.gov)	
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Concentration Pathways (RCPs). There are several RCPs and the higher global emissions are, the 
greater the expected increase in global temperature (Figure 2). OCCRI considers a lower 
emissions scenario (RCP 4.5) and a higher emissions scenario (RCP 8.5) because they are the 
most commonly used scenarios in published literature and the downscaled data is available for 
these scenarios. (Read more about emissions scenarios in the Appendix.) 
 

Downscaling 
Global climate models simulate the climate across adjacent grid boxes the size of about 60 by 60 
miles. To make this coarse resolution information locally relevant, GCM outputs have been 
combined with historical observations to translate large-scale patterns into high-resolution 
projections. This process is called statistical downscaling. The future climate projections 
produced by OCCRI were statistically downscaled to a resolution with grid boxes the size of 
about 2.5 by 2.5 miles (Abatzoglou and Brown, 2012). (Read more about downscaling in the 
Appendix.) 

Future Time Periods 
When analyzing global climate model projections of future climate, it is best practice to compare 
the average across at least a 30-year period in the future simulations to an average across at least 
a 30-year period in the historical simulations. The average over a 30-year period in the historical 
simulations is called the historical baseline. For the future climate projections in this report, two 
30-year future periods are analyzed in comparison with a 30-year historical baseline (Table 3). 
Each of the twenty global climate models simulates historical and future climate slightly 
differently. Thus, each global climate model has a different historical baseline from which future 
projections are compared. Because each climate model’s historical baseline is slightly different, 
this report presents the average and range of projected changes in the variables relative to each 
model’s own historical baseline (rather than the average and range of future projected absolute 
values). The average of the twenty historical baselines, called the average historical baseline, is 
also presented to aid in understanding the relative magnitude of projected changes. The average 

Figure	2	Future	scenarios	of	atmospheric	carbon	dioxide	concentrations	(left)	and	global	temperature	change	
(right)	resulting	from	several	different	emissions	pathways,	called	Representative	Concentration	Pathways	
(RCPs),	which	are	considered	in	the	fourth	and	most	recent	National	Climate	Assessment.	(Source:	
science2017.globalchange.gov)	
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historical baseline can be combined with the average projected future change to infer the average 
projected future absolute value of a given variable. 
Table 3 Historical and future time periods for presentation of future climate projections 

Historical Baseline Early 21st Century 
“2020s” 

Mid 21st Century 
“2050s” 

1971–2000 2010–2039 2040–2069 

How to Use the Information in this Report 
Climate change may bring novel conditions that have not been encountered in communities in 
the recent past. Thus, anticipating future outcomes by considering only past trends and 
variability may become increasingly unreliable. Future projections from GCMs provide an 
opportunity to explore a range of plausible outcomes taking into consideration the climate 
system’s complex response to increasing concentrations of greenhouse gases. Considering future 
projections alongside past trends or hazard events may provide additional insight when updating 
natural hazard mitigation plans and mitigation actions. It is important to be aware that GCM 
projections should not be thought of as predictions of what the weather will be like at some 
specified date in the future, but rather viewed as projections of the long-term statistical aggregate 
of weather, in other words, ”climate”, if greenhouse gas concentrations follow some specified 
trajectory.1  
The projections of climate variables in this report, both in the direction and magnitude of change, 
are best used in reference to the historical climate conditions under which a particular asset or 
system is designed to operate. For this reason, considering the projected changes between the 
historical and future periods allows one to envision how current systems of interest would 
respond to climate conditions that are different from what they have been. In some cases, the 
projected change may be small enough to be accommodated within the existing system. In other 
cases, the projected change may be large enough to require adjustments, or adaptations, to the 
existing system. However, engineering or design projects would require a more detailed analysis 
than what is available in this report. 

The information in this report can be used to: 

• Explore a range of plausible future outcomes taking into considering the climate system’s 
complex response to increasing greenhouse gases 

• Envision how current systems may respond under climate conditions different from those 
the systems were designed to operate under 

• Evaluate potential mitigation actions to accommodate future conditions 
• Influence the risk assessment in terms of the likelihood of a particular climate-related 

hazard occurring. 

  

 
1 Read more: https://nca2014.globalchange.gov/report/appendices/faqs#narrative-page-38784  
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Average Temperature 
Oregon’s average temperature warmed at a rate of 2.2°F per century during 1895–2019 (National 
Centers for Environmental Information (NCEI), 2020). Average temperature is expected to 
continue warming during the 21st century under scenarios of continued global greenhouse gas 
emissions; the rate of warming depends on the particular emissions scenario (Dalton et al., 
2017). By the 2050s (2040–2069) relative to the 1970–1999 historical baseline, Oregon’s 
average temperature is projected to increase by 3.6 °F with a range of 1.8°–5.4°F under a lower 
emissions scenario (RCP 4.5) and by 5.0°F with a range of 2.9°F–6.9°F under a higher emissions 
scenario (RCP 8.5) (Dalton et al., 2017). Furthermore, summers are projected to warm more than 
other seasons (Dalton et al., 2017). 
Average temperature in Umatilla County is projected to warm during the 21st century at a similar 
rate to Oregon as a whole (Figure 3). Projected increases in average temperature in Umatilla 
County relative to each global climate model’s 1971–2000 historical baseline range from 1.2–
4.1°F by the 2020s (2010–2039) and 2.1–7.9°F by the 2050s (2040–2069), depending on 
emissions scenario and climate model (Table 4). 

 
Figure 3 Annual average temperature projections for Umatilla County as simulated by 20 downscaled global climate 
models under a lower (RCP 4.5) and a higher (RCP 8.5) greenhouse gas emissions scenario. Solid line and shading depicts 
the 20-model mean and range, respectively. The multi-model mean differences for the 2020s (2010–2039 average) and the 
2050s (2040–2069 average) relative to the average historical baseline (1971–2000 average) are shown. 

Table 4 Average and range of projected future changes in Umatilla County's average temperature relative to each global 
climate model’s (GCM) historical baseline (1971–2000 average) for the 2020s (2010–2039 average) and 2050s (2040–2069 
average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 GCMs. 

 Change by Early 21st Century 
“2020s” 

Change by Mid 21st Century 
“2050s” 

Higher (RCP 8.5) +2.7°F (1.6 to 3.9) +5.6°F (3.0 to 7.5) 
Lower (RCP 4.5) +2.4°F (1.1 to 3.9) +4.3°F (2.0 to 5.9) 

Annual Average Temperature Projections
Umatilla County

°F
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Lower (RCP 4.5)
Higher (RCP 8.5)
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+2.7 °F
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Heat Waves 
Extreme heat events are expected to increase in frequency, duration, and intensity in Oregon due 
to continued warming temperatures. In fact, the hottest days in summer are projected to warm 
more than the change in mean temperature over the Pacific Northwest (Dalton et al., 2017). This 
report presents projected changes for three metrics of heat extremes for both daytime (maximum 
temperature) and nighttime (minimum temperature) (Table 5). 
Table 5 Heat extreme metrics and definitions 

Metric Definition 

Hot Days Number of days per year maximum temperature is greater than or 
equal to 90°F 

Warm Nights Number of days per year minimum temperature is greater than or 
equal to 65°F 

Hottest Day Annual maximum of maximum temperature 

Warmest Night Annual maximum of minimum temperature 

Daytime Heat Waves Number of events per year with at least 3 consecutive days with 
maximum temperature greater than or equal to 90°F 

Nighttime Heat Waves Number of events per year with at least 3 consecutive days with 
minimum temperature greater than or equal to 65°F 

 
In Umatilla County, all the extreme heat metrics in Table 5 are projected to increase by the 2020s 
(2010–2039) and 2050s (2040–2069) under both the lower (RCP 4.5) and higher (RCP 8.5) 
emissions scenarios (Table 6). For example, for the 2050s under the higher emissions scenario 
climate models project that the number of hot days greater than or equal to 90°F per year, 
relative to each model’s 1971–2000 historical baseline, would increase by as little as 11 days to 
as much as 41 days. The average projected increase in the number of hot days per year is 29 days 
above the average historical baseline of 19 days. This represents a projected more than doubling 
in the frequency of hot days by the 2050s under the higher emissions scenario.  
Likewise, the temperature of the hottest day of the year is projected to increase by as little as 
2.9°F to as much as 11.3°F by the 2050s under the higher emissions scenario relative to the 
models’ historical baselines. The average projected increase is 7.9°F above the average historical 
baseline of 96.8°F. The frequency of daytime heat waves is projected to double on average 
relative to the average historical baseline of nearly three events. In other words, hot days are 
projected to become more frequent and the hottest days are projected to become even hotter.  
Projected changes in the frequency of extreme heat days (i.e., Hot Days and Warm Nights) are 
shown in Figure 4. Projected changes in the magnitude of heat records (i.e., Hottest Day and 
Warmest Night) are shown in Figure 5. Projected changes in the frequency of extreme heat 
events (i.e., Daytime Heat Waves and Nighttime Heat Waves) are shown in Figure 6.  
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Table 6 Mean and range of projected future changes in extreme heat metrics for Umatilla County relative to each global 
climate model’s (GCM) historical baseline (1971–2000 average) for the 2020s (2010–2039 average) and 2050s (2040–2069 
average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 GCMs. The average historical 
baseline across the 20 GCMs is also presented and can be combined with the average projected future change to infer the 
average projected future absolute value of a given variable. However, the average historical baseline cannot be combined 
with the range of projected future changes to infer the range of projected future absolute values. 

 

 
Change by Early 21st 

Century 
“2020s” 

Change by Mid 21st 
Century 
“2050s” 

Average 
Historical 
Baseline 

Lower Higher Lower Higher 

Hot Days 18.8 days +10.7 days 
(3.5–17.1) 

+12.6 days 
(4.4–17.6) 

+20.6 days 
(7.4–30.8) 

+29.2 days 
(10.8–40.7) 

Warm Nights 3.2 days +3.7 days 
(0.9–8.4) 

+4.3 days 
(2.1–8.1) 

+8.3 days 
(1.3–18.0) 

+14.0 days 
(3.8–28.7) 

Hottest Day 96.8°F +3.3°F 
(0.7–5.0) 

+3.8°F 
(1.1–5.4) 

+5.9°F 
(2.2–8.4) 

+7.9°F 
(2.9–11.3) 

Warmest Night 65.2°F +2.5°F 
(0.9–4.1) 

+2.8°F 
(1.2–3.7) 

+4.4°F 
(1.3–7.0) 

+6.4°F 
(3.3–9.5) 

Daytime 
Heat Waves 2.6 events +1.1 events 

(0.5–1.7) 
+1.3 events 
(0.7–1.8) 

+1.9 events 
(1.1–3.1) 

+2.3 events 
(1.3–3.8) 

Nighttime 
Heat Waves 0.4 events +0.5 events 

(0.1–1.0) 
+0.6 events 
(0.3–0.9) 

+1.1 events 
(0.1–2.3) 

+1.7 events 
(0.3–3.2) 

 
Figure 4 Projected future changes in the number of hot days (left two sets of bars) and number of warm nights (right two 
sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s (2010–2039 average) 
and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 global 
climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes across the 20 GCMs 
relative to each GCM’s historical baseline. Hot days are defined as days with maximum temperature of at least 90°F; 
warm nights are defined as days with minimum temperature of at least 65°F.  
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Figure 5 Projected future changes in the hottest day of the year (left two sets of bars) and warmest night of the year (right 
two sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s (2010–2039 
average) and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 
global climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes across the 20 
GCMs relative to each GCM’s historical baseline. 
 

 
Figure 6 Projected future changes in the number of daytime heat waves (left two sets of bars) and number of nighttime 
heat waves (right two sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 
2020s (2010–2039 average) and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions 
scenario based on 20 global climate models (GCMs). The bars and whiskers display the mean and range, respectively, of 
changes across the 20 GCMs relative to each GCM’s historical baseline. Daytime heat waves are defined as events with 
three or more consecutive days with maximum temperature of at least 90°F; nighttime heat waves are defined as events 
with three or more consecutive days with minimum temperature of at least 65°F.  
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Key Messages: 
Þ Extreme heat events are expected to increase in frequency, duration, and intensity due to 

continued warming temperatures. 
Þ In Umatilla County, all the extreme heat metrics in Table 5 are projected to increase by 

the 2020s and 2050s under both the lower (RCP 4.5) and higher (RCP 8.5) emissions 
scenarios (Table 6). 

Þ In Umatilla County, the frequency of hot days per year with temperatures at or above 
90°F is projected to increase on average by 29 days, with a range of about 11 to 41 days, 
by the 2050s under the higher emissions scenario relative to the historical baselines. This 
average increase represents a more than doubling of hot days relative to the average 
historical baseline. 

Þ In Umatilla County, the temperature of the hottest day of the year is projected to increase 
on average by nearly 8°F, with a range of about 3 to 11°F, by the 2050s under the higher 
emissions scenario relative to the historical baselines. 
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Cold Waves 
Over the past century, cold extremes have become less frequent and severe in the Northwest; this 
trend is expected to continue under future global warming of the climate system (Vose et al., 
2017). This report presents projected changes for three metrics of cold extremes for both daytime 
(maximum temperature) and nighttime (minimum temperature) (Table 7). 
Table 7 Cold extreme metrics and definitions 

Metric Definition 

Cold Days Number of days per year maximum temperature is less than or 
equal to 32°F 

Cold Nights Number of days per year minimum temperature is less than or 
equal to 0°F 

Coldest Day Annual minimum of maximum temperature 

Coldest Night Annual minimum of minimum temperature 

Daytime Cold Waves Number of events per year with at least 3 consecutive days with 
maximum temperature less than or equal to 32°F 

Nighttime Cold Waves Number of events per year with at least 3 consecutive days with 
minimum temperature less than or equal to 0°F 

 
In Umatilla County, the extreme cold metrics in Table 7 are projected to become less frequent or 
less cold by the 2020s (2010–2039) and 2050s (2040–2069) under both the lower (RCP 4.5) and 
higher (RCP 8.5) emissions scenarios (Table 8). For example, for the 2050s under the higher 
emissions scenario climate models project that the number of cold days less than or equal to 
32°F per year, relative to each model’s 1971–2000 historical baseline, would decrease by at least 
5 days to as much as 17 days. The average projected decrease in the number of cold days per 
year is 11 days relative to the average historical baseline of 18 days. This represents a future with 
a little more than half as many cold days as before by the 2050s under the higher emissions 
scenario.  
Likewise, the temperature of the coldest night of the year is projected to increase by at most 
16.9°F relative to the models’ historical baselines. The average projected increase is 9.4°F above 
the average historical baseline of 0.0°F. The frequency of daytime cold waves is projected to 
decrease by one event per year on average relative to the average historical baseline of about two 
events. In other words, cold days are projected to become less frequent and the coldest nights are 
projected to become warmer. 
Projected changes in the frequency of extreme cold days (i.e., Cold Days and Cold Nights) are 
shown in Figure 7. Projected changes in the magnitude of cold records (i.e., Coldest Day and 
Coldest Night) are shown in Figure 8. Projected changes in the frequency of extreme cold events 
(i.e., Daytime Cold Waves and Nighttime Cold Waves) are shown in Figure 9.  
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Table 8 Mean and range of projected future changes in extreme cold metrics for Umatilla County relative to each global 
climate model’s (GCM) historical baseline (1971–2000 average) for the 2020s (2010–2039 average) and 2050s (2040–2069 
average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 GCMs. The average historical 
baseline across the 20 GCMs is also presented and can be combined with the average projected future change to infer the 
average projected future absolute value of a given variable. However, the average historical baseline cannot be combined 
with the range of projected future changes to infer the range of projected future absolute values. 

  Change by Early 21st Century 
“2020s” 

Change by Mid 21st Century 
“2050s” 

Average 
Historical 
Baseline 

Lower Higher Lower Higher 

Cold Days 17.8 days -5.5 days 
(-9.4 to 0.5) 

-7.0 days 
(-11.6 to -1.6) 

-9.4 days 
(-12.9 to -3.7) 

-10.9 days 
(-16.5 to -5.2) 

Cold 
Nights 1.6 days -0.5 days 

(-1.3 to 0.6) 
-0.8 days 

(-1.5 to 0.0) 
-1.0 days 

(-1.9 to -0.1) 
-1.1 days 

(-1.8 to -0.0) 
Coldest 

Day 17.1°F +2.1°F 
(-1.3 to 5.3) 

+3.7°F 
(-0.1 to 8.5) 

+5.7°F 
(0.2 to 9.8) 

+6.8°F 
(-0.1 to 12.8) 

Coldest 
Night 0.0°F +3.3°F 

(-1.6 to 9.4) 
+5.3°F 

(0.8 to 12.2) 
+7.7°F 

(1.2 to 13.7) 
+9.4°F 

(0.0 to 16.9) 
Daytime 

Cold 
Waves 

2.4 events -0.7 events 
(-1.3 to 0.3) 

-0.9 events 
(-1.7 to -0.2) 

-1.2 events 
(-1.9 to -0.6) 

-1.4 events 
(-2.2 to -0.6) 

Nighttime 
Cold 

Waves 
0.2 events -0.0 events 

(-0.2 to 0.1) 
-0.1 events 
(-0.2 to 0.1) 

-0.1 events 
(-0.3 to 0.0) 

-0.1 events 
(-0.3 to -0.0) 

 

 
Figure 7 Projected future changes in the number of cold days (left two sets of bars) and number of cold nights (right two 
sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s (2010–2039 average) 
and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 global 
climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes across the 20 GCMs 
relative to each GCM’s historical baseline. Cold days are defined as days with maximum temperature at or below 32°F; 
cold nights are defined as days with minimum temperature at or below 0°F. 
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Figure 8 Projected future changes in the coldest day of the year (left two sets of bars) and coldest night of the year (right 
two sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s (2010–2039 
average) and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 
global climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes across the 20 
GCMs relative to each GCM’s historical baseline. 

 

 
Figure 9 Projected future changes in the number of daytime cold waves (left two sets of bars) and number of nighttime 
cold waves (right two sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 
2020s (2010–2039 average) and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions 
scenario based on 20 global climate models (GCMs). The bars and whiskers display the mean and range, respectively, of 
changes across the 20 GCMs relative to each GCM’s historical baseline. Daytime cold waves are defined as events with 
three or more consecutive days with maximum temperature at or below 32°F; nighttime cold waves are defined as events 
with three or more consecutive days with minimum temperature at or below 0°F. 
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Key Messages: 
Þ Cold extremes are still expected to occur from time to time, but with much less frequency 

and intensity as the climate warms. 
Þ In Umatilla County, the extreme cold metrics in Table 7 are projected to become less 

frequent or less cold by the 2020s and 2050s under both the lower (RCP 4.5) and higher 
(RCP 8.5) emissions scenarios (Table 8). 

Þ In Umatilla County, the frequency of cold days per year at or below freezing is projected 
to decrease on average by 11 days, with a range of about 5 to 17 days, by the 2050s under 
the higher emissions scenario relative to the historical baselines. This average decrease 
represents a future with a little more than half as many cold days per year as in the 
average historical baseline.  

Þ In Umatilla County, the temperature of the coldest night of the year is projected to 
increase on average by about 9°F, with a range of about 0 to 17°F, by the 2050s under the 
higher emissions scenario relative to the historical baselines. 
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Heavy Rains 
There is greater uncertainty in future projections of precipitation-related metrics than 
temperature-related metrics. This is because of the large natural variability in precipitation 
patterns and the fact that the atmospheric patterns that influence precipitation are manifested 
differently across GCMs. From a global perspective, mean precipitation is likely to decrease in 
many dry regions in the sub-tropics and mid-latitudes and increase in many mid-latitude wet 
regions (IPCC, 2013). That boundary between mid-latitude increases and decreases in 
precipitation is positioned a little differently for each GCM, which results in some models 
projecting increases and others decreases in Oregon (Mote et al., 2013).  
In Oregon, observed precipitation is characterized by high year-to-year variability and future 
precipitation trends are expected to continue to be dominated by this large natural variability. On 
average, summers in Oregon are projected to become drier and other seasons to become wetter 
resulting in a slight increase in annual precipitation by the 2050s (2040–2069). However, some 
models project increases and others decreases in each season (Dalton et al., 2017). 
Extreme precipitation events in the Pacific Northwest are governed both by atmospheric 
circulation and by how it interacts with complex topography (Parker and Abatzoglou, 2016). 
Atmospheric rivers—long, narrow swaths of warm, moist air that carry large amounts of water 
vapor from the tropics to mid-latitudes—generally result in coherent extreme precipitation events 
west of the Cascade Range, while closed low pressure systems often lead to isolated precipitation 
extremes east of the Cascade Range (Parker and Abatzoglou, 2016).2 
Observed trends in the frequency of extreme precipitation events across Oregon have depended 
on the location, time frame, and metric considered, but overall the frequency has not changed 
substantially. As the atmosphere warms, it is able to hold more water vapor that is available for 
precipitation. As a result, the frequency and intensity of extreme precipitation events are 
expected to increase in the future (Dalton et al., 2017), including atmospheric river events 
(Kossin et al., 2017). In addition, regional climate modeling results suggest a weakened rain 
shadow effect in winter projecting relatively larger increases in precipitation east of the Cascades 
and smaller increases west of the Cascades in terms of both seasonal precipitation totals and 
precipitation extremes (Mote et al., 2019). 

This report presents projected changes for four metrics of precipitation extremes (Table 9).  
  

 
2 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
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Table 9 Precipitation extreme metrics and definitions 

Metric Definition 

Wettest Day Annual maximum 1-day precipitation per water year 

Wettest Five-Days Annual maximum 5-day precipitation total per water year 

Wet Days Number of days per year with precipitation greater than 0.75 inches 

Landslide Risk 
Days 

Number of days per water year exceeding the USGS landslide 
threshold3: https://pubs.er.usgs.gov/publication/ofr20061064  

o P3/(3.5-.67*P15)>1, where:  
§ P3 = Previous 3-day precipitation accumulation  
§ P15 = 15-day precipitation accumulation prior to P3 

 
In Umatilla County, the magnitude of precipitation on the wettest day and wettest consecutive 
five days is projected to increase on average by the 2020s (2010–2039) and 2050s (2040–2069) 
under both the lower and higher emissions scenarios (Table 10). However, some models project 
decreases in the wettest consecutive five days in all time periods and scenarios.  
For the 2050s under the higher emissions scenario, climate models project that the magnitude, or 
amount, of precipitation on the wettest day of the year, relative to each model’s 1971–2000 
historical baseline, would increase by as little as 7.0% to as much as 38.8%. The average 
projected percent increase in the amount of precipitation on the wettest day of the year is 19.0% 
above the average historical baseline of 0.88 inches. 
For the magnitude of precipitation on the wettest consecutive five days of the year, some models 
project decreases by as much as 1.4% while other models project increases by as much as 32.1% 
for the 2050s under the higher emissions scenario. The average projected percent change in the 
amount of precipitation on the wettest consecutive five days is an increase of 13.7% above the 
average historical baseline of 2.07 inches.  
The average number of days per year with precipitation greater than ¾” is projected to increase 
only by about one day per year by the 2050s under the higher emissions scenario relative to the 
average historical baseline of about two days per year. 
Landslides are often triggered by rainfall when the soil becomes saturated. This report analyzes a 
cumulative rainfall threshold based on the previous 3-day and 15-day precipitation accumulation 
as a surrogate for landslide risk. For Umatilla County, the average number of days per year 
exceeding the landslide risk threshold is projected to increase on average by one day per year by 
the 2050s under the higher emissions scenario relative to the average historical baseline of three 
days per year. Landslide risk depends on a variety of site-specific factors and this metric may not 
reflect all aspects of the hazard. It is important to note that this particular landslide threshold was 
developed for Seattle, Washington and may or may not have similar applicability to other 
locations. 

 
3 This threshold was developed for Seattle, Washington and may or may not have similar applicability to other 
locations.  
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Projected changes in the magnitude of extreme precipitation events (i.e., Wettest Day and 
Wettest Five-Days) are shown in Figure 10. Projected changes in the frequency of extreme 
precipitation events (i.e., Wet Days and Landslide Risk Days) are shown in Figure 11.  
Table 10 Mean and range of projected future changes in extreme precipitation metrics for Umatilla County relative to 
each global climate model’s (GCM) historical baseline (1971–2000 average) for the 2020s (2010–2039 average) and 2050s 
(2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 GCMs. The average 
historical baseline across the 20 GCMs is also presented and can be combined with the average projected future change to 
infer the average projected future absolute value of a given variable. However, the average historical baseline cannot be 
combined with the range of projected future changes to infer the range of projected future absolute values. 

  Change by Early 21st Century 
“2020s” 

Change by Mid 21st Century 
“2050s” 

Average 
Historical 
Baseline 

Lower Higher Lower Higher 

Wettest 
Day 0.88” +13.5% 

(6.9 to 23.6) 
+11.7% 

(-1.7 to 23.2) 
+15.6% 

(3.6 to 26.0) 
+19.0% 

(7.0 to 38.8) 
Wettest 
Five-Days 2.07” +9.6% 

(-1.4 to 25.4) 
+7.5% 

(-1.9 to 20.5) 
+11.2% 

(-1.2 to 26.3) 
+13.7% 

(-1.4 to 32.1) 

Wet Days 2.4 days +0.4 days 
(-0.2 to 0.8) 

+0.2 days 
(-0.2 to 0.8) 

+0.6 days 
(0.0 to 0.9) 

+0.7 days 
(0.1 to 1.5) 

Landslide 
Risk Days 3.2 days 0.5 days 

(-0.2 to 1.4) 
0.4 days 

(-0.7 to 1.8) 
0.7 days 

(-0.3 to 1.5) 
1.0 days 

(-0.2 to 2.6) 
 
 
 

 
Figure 10 Projected future changes in the wettest day of the year (left two sets of bars) and wettest consecutive five days of 
the year (right two sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s 
(2010–2039 average) and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario 
based on 20 global climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes 
across the 20 GCMs relative to each GCM’s historical baseline. 
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Figure 11 Projected future changes in the frequency of wet days (left two sets of bars) and landslide risk days (right two 
sets of bars) for Umatilla County relative to the historical baseline (1971–2000 average) for the 2020s (2010–2039 average) 
and 2050s (2040–2069 average) under a lower (RCP 4.5) and higher (RCP 8.5) emissions scenario based on 20 global 
climate models (GCMs). The bars and whiskers display the mean and range, respectively, of changes across the 20 GCMs 
relative to each GCM’s historical baseline. 

 

  

Key Messages: 
Þ The intensity of extreme precipitation events is expected to increase in the future as the 

atmosphere warms and is able to hold more water vapor. 
Þ In Umatilla County, the frequency of days with at least ¾” of precipitation is not 

projected to change substantially. However, the magnitude of precipitation on the wettest 
day and wettest consecutive five days per year is projected to increase on average by 
about 19% (with a range of 7% to 39%) and 14% (with a range of -1% to 32%), 
respectively, by the 2050s under the higher emissions scenario relative to the historical 
baselines. 

Þ In Umatilla County, the frequency of days exceeding a threshold for landslide risk, based 
on 3-day and 15-day precipitation accumulation, is not projected to change substantially. 
However, landslide risk depends on a variety of factors and this metric may not reflect all 
aspects of the hazard. 
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River Flooding 
Future streamflow magnitude and timing in the Pacific Northwest is projected to shift toward 
higher winter runoff, lower summer and fall runoff, and an earlier peak runoff, particularly in 
snow-dominated regions (Raymondi et al., 2013; Naz et al., 2016).4 These changes are expected 
to result from warmer temperatures causing precipitation to fall more as rain and less as snow, in 
turn causing snow to melt earlier in the spring; and in combination with increasing winter 
precipitation and decreasing summer precipitation (Dalton et al., 2017; Mote et al., 2019). 
The projected change in the mean monthly hydrograph of the Columbia River at McNary is 
shown in Figure 12 and of the Umatilla River at Pendleton is shown in Figure 13. On the 
Columbia River at Brownlee Dam, the monthly hydrograph is characteristic of a snow-
dominated basin with peak flows during the late spring snowmelt season (Figure 12). On the 
Umatilla River at McNary, the monthly hydrograph is characteristic of a mixed rain-snow basin 
with peak flows during the early to mid-spring snowmelt season and a smaller peak in late fall to 
early winter reflecting rainfall contributions early in the water year (Figure 13). By the 2050s 
(2040–2069), under both emissions scenarios, the peak streamflow in both rivers is projected to 
shift earlier in the spring as warmer temperatures cause the snowpack to melt earlier. In addition, 
winter streamflow is projected to increase due to increased winter precipitation and that 
precipitation falling more as rain than snow.  

 

Figure 12 Simulated historical and future bias-corrected mean monthly non-regulated streamflow at the Columbia River 
at McNary for 2040–2069 compared to 1971–2000. Solid lines and shading depict the mean and range across ten global 
climate models. (Data source: Integrated Scenarios of the Future Northwest Environment, 
https://climatetoolbox.org/tool/future-streamflows) 

 
4 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
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Figure 13 Simulated historical and future bias-corrected mean monthly non-regulated streamflow at the Umatilla River 
at Pendleton for 2040–2069 compared to 1971–2000. Solid lines and shading depict the mean and range across ten global 
climate models. (Data source: Integrated Scenarios of the Future Northwest Environment, 
https://climatetoolbox.org/tool/future-streamflows) 

Warming temperatures and increased winter precipitation are expected to increase flood risk for 
many basins in the Pacific Northwest, particularly mid- to low-elevation mixed rain-snow basins 
with near freezing winter temperatures (Tohver et al., 2014). The greatest changes in peak 
streamflow magnitudes are projected to occur at intermediate elevations in the Cascade Range 
and the Blue Mountains (Safeeq et al., 2015). Recent advances in regional hydro-climate 
modeling support this expectation, projecting increases in extreme high flows for most of the 
Pacific Northwest, especially west of the Cascade Crest (Salathé et al., 2014; Najafi and 
Moradkhani, 2015; Naz et al., 2016). One study, using a single climate model, projects flood risk 
to increase in the fall due to earlier, more extreme storms, including atmospheric river events, 
and to a shift of precipitation from snow to rain (Salathé et al., 2014).5 Across the western US, 
the 100-year and 25-year peak flow magnitudes—major flooding events—are projected to 
increase at a majority of streamflow sites by the 2070–2099 period compared to the 1971–2000 
historical baseline under the higher emissions scenario (RCP 8.5) (Maurer et al., 2018). 
In parts of the Blue Mountains (the Wallowa Mountains, Hells Canyon Wilderness Area, and 
northeast Wallowa-Whitman National Forest), flood magnitude for the 1.5-year return period 
event is expected to increase by the end of the 21st century under a medium emission scenario 
(SRES-A1B)6, particularly in mid-elevation areas, as precipitation falls more as rain and less as 
snow (Clifton et al., 2018) (Figure 14). The 1.5-year return period event has a 67% probability of 
occurrence in a given year and is indicative of flooding levels that can begin to cause damage to 

 
5 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
6 The medium emissions pathway (SRES-A1B) is from an earlier generation of emissions scenarios and it is most 
similar to RCP 6.0 from Figure 2.	
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roads. An increase in flood magnitude for a specified flood frequency implies an increase in 
flood frequency for a given flood magnitude. Figure 14 shows projections of flood magnitude 
change for the 1.5-year return period event for the 2080s compared to a historical baseline. 
Unfortunately, this study does not project changes in flood magnitude for the Blue Mountains 
region for the 2020s and 2050s; projected changes can be expected to be of a similar direction 
but a smaller magnitude. 
 

 
Figure 14 Projected change in the 1.5-year return interval daily flow magnitude between the historical period (1970–1999) 
and the 2080s (2070–2099) under a medium emissions scenario (SRES-A1B)7 for the Blue Mountains region. (Source: 
Clifton et al., 2018) 

Some of the Pacific Northwest’s largest floods occur when copious warm rainfall from 
atmospheric rivers combine with a strong snowpack, resulting in rain-on-snow flooding events 
(Safeeq et al., 2015). 8 The frequency and intensity—amount of transported moisture—of 
atmospheric river events is projected to increase along the West Coast in response to rising 
atmospheric temperatures (Kossin et al., 2017). This larger moisture transport of atmospheric 
rivers would lead to greater likelihoods of flooding along the West Coast (Konrad and Dettinger, 
2017).  
Future changes in rain-on-snow events as a result of climate warming depend on elevation. At 
lower elevations, the frequency of rain-on-snow events is projected to decrease due to decreasing 
snowpack, whereas at high elevations the frequency of rain-on-snow events is projected to 

 
7 The medium emissions pathway (SRES-A1B) is from an earlier generation of emissions scenarios and it is most 
similar to RCP 6.0 from Figure 2. 
8 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017)	
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increase due to the shift from snowy to rainy days (Surfleet and Tullos, 2013; Safeeq et al., 2015; 
Musselman et al., 2018). How such changes in rain-on-snow frequency would affect high 
streamflow events is varied. For example, projections for the Santiam River, OR, show an 
increase in annual peak daily flows with moderate return intervals (<10 years) but a decrease at 
higher (> 10-year) return intervals (Surfleet and Tullos, 2013). 
 

 
  

Key Messages: 
Þ Mid- to low-elevation areas in Umatilla County’s Blue Mountains that are near the 

freezing level in winter, receiving a mix of rain and snow, are projected to experience 
an increase in winter flood risk due to warmer winter temperatures causing precipitation 
to fall more as rain and less as snow. 
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Drought 
Across the western US, mountain snowpack is projected to decline leading to reduced summer 
soil moisture in mountainous environments (Gergel et al., 2017). Climate change is expected to 
result in lower summer streamflows in historically snow-dominated basins across the Pacific 
Northwest as snowpack melts off earlier due to warmer temperatures and summer precipitation 
decreases (Dalton et al., 2017; Mote et al., 2019). See, for example, the decrease in summer 
flows expected for the Columbia River at McNary (Figure 12) and the Umatilla River at 
Pendleton (Figure 13) by the 2050s (2040–2069) under both lower and higher emissions 
scenarios.  
This report presents future changes in five variables indicative of drought conditions—low 
spring snowpack, low summer soil moisture9, low summer runoff, low summer precipitation, and 
high summer evaporation—in terms of a change in the frequency of the historical baseline 1-in-5 
year event (that is, an event having a 20% chance of occurrence in any given year). The future 
projections, displayed in the orange and brown bars of Figure 15, are the frequency in the future 
period of the magnitude of the event that has a 20% frequency in the historical period.  

 
Figure 15 Frequency of the historical baseline (1971–2000) 1-in-5 year event (by definition 20% frequency) of low 
summer soil moisture (average of June-July-August), low spring snowpack (April 1 snow water equivalent), low summer 
runoff (total of June-July-August), low summer precipitation (total for June-July-August), high summer evaporation 
(total for June-July-August) for the future period 2040–2069 for lower (RCP 4.5) and higher (RCP 8.5) emissions 
scenarios. The bar and whiskers depict the mean and range across ten global climate models. (Data Source: Integrated 
Scenarios of the Future Northwest Environment, https://climate.northwestknowledge.net/IntegratedScenarios/) 

In Umatilla County, spring snowpack (that is, the snow water equivalent on April 1), summer 
runoff, summer soil moisture, and summer precipitation are projected to decline under both 
lower (RCP 4.5) and higher (RCP 8.5) emissions scenarios by the 2050s (2040–2069). This leads 
to the magnitude of low summer soil moisture, low spring snow pack, low summer runoff, and 
low summer precipitation expected with a 20% chance in any given year of the historical period 
being projected to occur more frequently by the 2050s under both emissions scenarios (Figure 
15). Of the five metrics, climate change shows the strongest impact on spring snowpack in 
Umatilla County. By the 2050s under the higher emissions scenario, the 1-in-5 year event for 

 
9 Soil moisture projections are for the total moisture in the soil column from the surface to 140 cm below the 
surface. 



	

	 26 

low spring snowpack is projected to become roughly a 1-in-1.5 year event. The projected 
changes in the 1-in-5 year events for the other variables are smaller and less certain given that 
some models project an increase and others a decrease. On average, the 1-in-5 year event for low 
summer precipitation, runoff, and soil moisture is projected to become roughly a 1-in-3.5 year 
event by the 2050s under the higher emissions scenario. The 2020s (2010–2039) were not 
evaluated in this drought analysis due to data limitations, but can be expected to be similar but of 
smaller magnitude to the changes for the 2050s. 
Some areas in northeast Oregon are more sensitive to changes in spring snowpack and summer 
streamflow than others. A climate vulnerability analysis for the Blue Mountains region indicates 
that declines in spring snowpack are projected to be largest in low to mid-elevation locations, but 
even some locally higher elevation ranges, such as mid-elevations in the North Fork John Day 
Wilderness, North Fork Umatilla Wilderness, and Wenaha-Tucannon Wilderness would have 
relatively high sensitivity to snow losses (Clifton et al., 2018). Summer streamflow in about half 
of the perennial streams in the Blue Mountains are projected to decrease by less than 10%, while 
areas more sensitive to changing low flows, such as the Wallowa Mountains, Elkhorn 
Mountains, and Wenaha-Tucannon Wilderness, are projected to see decreases in summer 
streamflow of more than 30% by the late 21st century (Clifton et al., 2018) (Figure 16). Sub-
basins with high risk for summer water shortage associated with low streamflow include the 
Upper Grande Ronde, Upper John Day, and Wallowa sub-basins (Figure 17) (Clifton et al., 
2018). 

 
Figure 16 Projected change in mean summer streamflow from the historic time period (1970–1999) to the 2080s (2070–
2099) under a medium emissions scenario10 for streams in the Blue Mountains region. Note, the 0 to 10%, 10.1 to 20%, 
etc. all indicate decreases in flow. (Source: Clifton et al., 2018) 

 
10 The medium emissions pathway (SRES-A1B) is from an earlier generation of emissions scenarios and it is most 
similar to RCP 6.0 from Figure 2. 
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Figure 17 Projected risk of summer water shortage in the Blue Mountains region, based on low streamflows for 2080s 
(2070–2099) under a medium emissions scenario11. (Source: Clifton et al., 2018) 

 
 
 

 
 
 
 
  

 
11 The medium emissions pathway (SRES-A1B) is from an earlier generation of emissions scenarios and it is most 
similar to RCP 6.0 from Figure 2. 

Key Messages: 
Þ Drought conditions, as represented by low summer soil moisture, low spring snowpack, 

low summer runoff, and low summer precipitation are projected to become more frequent 
in Umatilla County by the 2050s relative to the historical baseline.  

Þ By the end of the 21st century, summer low flows are projected to decrease in the Blue 
Mountains region putting some sub-basins at high risk for summer water shortage 
associated with low streamflow.  
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Wildfire 
Over the last several decades, warmer and drier conditions during the summer months have 
contributed to an increase in fuel aridity and enabled more frequent large fires, an increase in the 
total area burned, and a longer fire season across the western United States, particularly in 
forested ecosystems (Dennison et al., 2014; Jolly et al., 2015; Westerling, 2016; Williams and 
Abatzoglou, 2016). The lengthening of the fire season is largely due to declining mountain 
snowpack and earlier spring snowmelt (Westerling, 2016). Recent wildfire activity in forested 
ecosystems is partially attributed to human-caused climate change: during the period 1984–2015, 
about half of the observed increase in fuel aridity and 4.2 million hectares (or more than 16,000 
square miles) of burned area in the western United States were due to human-caused climate 
change (Abatzoglou and Williams, 2016).12  
With climate change, warmer and drier conditions are expected to become more frequent leading 
to lower fuel moisture and longer fire seasons, which would increase the frequency and area 
burned of wildfires in the Pacific Northwest (Halofsky et al., 2020). In dry coniferous forests on 
the east side of the Cascades, there is high likelihood (>66% probability) and high confidence for 
large increases in wildfire frequency, extent, and severity as well as fire-drought-insect stress 
interactions by the mid- to late-21st century (Halofsky et al., 2020). Because climate is such a 
strong driver of factors that lead to total area burned, resource managers are unlikely to have a 
great influence on total area burned. However, strategic fuel treatments may be able to decrease 
fire intensity and severity as well as increase forest resilience (Halofsky et al., 2020). 
As a proxy for wildfire risk, this report considers a fire danger index called 100-hour fuel 
moisture (FM100), which is a measure of the amount of moisture in dead vegetation in the 1–3 
inch diameter class available to a fire. It is expressed as a percent of the dry weight of that 
specific fuel. FM100 is a common index used by the Northwest Interagency Coordination Center 
to predict fire danger. A majority of climate models project that FM100 would decline across 
Oregon by the 2050s (2040–2069) under the higher (RCP 8.5) emissions scenario (Gergel et al., 
2017). This drying of vegetation would lead to greater wildfire risk, especially when coupled 
with projected decreases in summer soil moisture. This report defines a “very high” fire danger 
day to be a day in which FM100 is lower (i.e., drier) than the historical baseline 10th percentile 
value. By definition, the historical baseline has 36.5 very high fire danger days annually. The 
future change in wildfire risk is expressed as the average annual number of additional “very 
high” fire danger days for two future periods under two emissions scenarios compared with the 
historical baseline (Figure 18). The impacts of wildfire on air quality are discussed in the 
following section on Air Quality. 
 

 
12 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
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Figure 18 Projected future changes in the frequency of very high fire danger days for Umatilla County from the historical 
baseline (1971–2000 average) for the 2020s (2010–2039 average) and 2050s (2040–2069 average) under a lower (RCP 4.5) 
and higher (RCP 8.5) emissions scenario based on 18 global climate models. The bars and whiskers display the mean and 
range, respectively, of changes across the 18 GCMs. (Data Source: Northwest Climate Toolbox, 
climatetoolbox.org/tool/Climate-Mapper) 

 

 
 
 
 
  

Key Messages: 
Þ Wildfire risk, as expressed through the frequency of very high fire danger days, is 

projected to increase under future climate change in Umatilla County. 
Þ In Umatilla County, the frequency of very high fire danger days per year is projected to 

increase on average by about 15 days (with a range of -5 to +37 days) by the 2050s under 
the higher emissions scenario compared to the historical baseline. 

Þ In Umatilla County, the frequency of very high fire danger days per year is projected to 
increase on average by about 40% (with a range of -14 to +101%) by the 2050s under the 
higher emissions scenario compared to the historical baseline. 
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Air Quality 
Climate change is expected to worsen outdoor air quality. Warmer temperatures may increase 
ground level ozone pollution, more wildfires may increase smoke and particulate matter, and 
longer, more potent pollen seasons may increase aeroallergens. Such poor air quality is expected 
to exacerbate allergy and asthma conditions and increase respiratory and cardiovascular illnesses 
and death (Fann et al., 2016).13 In addition to increasing health risks, wildfire smoke impairs 
visibility and disrupts outdoor recreational activities (Nolte et al., 2018). This report presents 
quantitative projections of future air quality measures related to fine particulate matter (PM2.5) 
from wildfire smoke.  
Climate change is expected to result in a longer wildfire season with more frequent wildfires and 
greater area burned (Sheehan et al., 2015). Wildfires are primarily responsible for days when air 
quality standards for PM2.5 are exceeded in western Oregon and parts of eastern Oregon (Liu et 
al., 2016), although woodstove smoke and diesel emissions are also main contributors (Oregon 
DEQ, 2016). Across the western United States, PM2.5 levels from wildfires are projected to 
increase 160% by mid-century under a medium emissions pathway11 (SRES A1B) (Liu et al., 
2016). This translates to a greater risk of wildfire smoke exposure through increasing frequency, 
length, and intensity of “smoke waves”—that is, two or more consecutive days with high levels 
of PM2.5 from wildfires (Liu et al., 2016).14  
The change in risk of poor air quality due to wildfire-specific PM2.5 is expressed as the number 
of “smoke wave” days within a six-year period and the average intensity—concentration of 
particulate matter—of smoke wave days in the present (2004–2009) and mid-century (2046–
2051) under a medium emissions pathway15 (Figure 19). See Appendix for description of 
methodology and access to the Smoke Wave data. 
In Umatilla County the frequency of “smoke wave” days is expected to more than double and the 
intensity—the concentration of particulate matter—of “smoke wave” days is expected to 
increase.  
 

 
 

 
 

 
13 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
14 Verbatim from the Third Oregon Climate Assessment Report (Dalton et al., 2017) 
15 The medium emissions pathway used is from an earlier generation of emissions scenarios. Liu et al. (2016) used 
SRES-A1B, which is most similar to RCP 6.0 from Figure 2.	
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Figure 19 Simulated present day (2004–2009) and future (2046–2051) frequency (left) and intensity (right) of “smoke 
wave” days for Umatilla County under a medium emissions scenario11. The bars display the mean across 15 GCMs. (Data 
source: Liu et al. 2016, https://khanotations.github.io/smoke-map/) 

 
 

 
 

 
 

  

Key Messages: 
Þ Under future climate change, the risk of wildfire smoke exposure is projected to 

increase in Umatilla County. 

Þ In Umatilla County, the number of “smoke wave” days is projected to increase by 141% 
and the intensity of “smoke waves” is projected to increase by 82% by 2046–2051 
under a medium emissions scenario compared with 2004–2009. 

 



	

	 32 

Windstorms 
Climate change has the potential to alter surface winds through changes in the large-scale free 
atmospheric circulation and storm systems, and through changes in the connection between the 
free atmosphere and the surface. West of the Cascade Mountains in the Pacific Northwest, 
changes in surface wind speeds tend to follow changes in upper atmosphere winds associated 
with extratropical cyclones (Salathé et al., 2015). East of the Cascades, cool air pooling is 
common which can impede the transport of wind energy from the free atmosphere to the surface. 
Changes in this factor are likely important for understanding future changes in windstorms 
(Salathé et al., 2015). However, this is not yet well studied. 
Winter extratropical storm frequency in the northeast Pacific exhibited a positive, though 
statistically not significant, trend since 1950 (Vose et al., 2014). However, there is a high degree 
of uncertainty in future projections of extratropical cyclone frequency (IPCC, 2013). Future 
projections indicate a slight northward shift in the jet stream and extratropical cyclone activity, 
but there is as yet no consensus on whether or not extratropical storms (Vose et al., 2014; Seiler 
and Zwiers, 2016; Chang, 2018) and associated extreme winds (Kumar et al., 2015) will 
intensify or become more frequent along the Northwest coast under a warmer climate. Therefore, 
no descriptions of future changing conditions are included in this report. 

  
Key Messages: 
Þ Limited research suggests very little, if any, change in the frequency and intensity of 

windstorms in the Pacific Northwest as a result of climate change.  
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Dust Storms 
Climate, through precipitation and winds, and vegetation coverage can influence the frequency 
and magnitude of dust events, or dust storms, which primarily concern parts of eastern Oregon. 
Periods of low precipitation can dry out the soils increasing the amount of soil particulate matter 
available to be entrained in high winds. In addition, the amount of vegetation cover can influence 
the amount of soil susceptible to high winds.  
One study found that in eastern Oregon, precipitation is the dominant factor affecting dust event 
frequency in the spring whereas vegetation cover is the dominant factor in the summer (Pu and 
Ginoux, 2017). The same study projected that in the summertime in eastern Oregon, dust event 
frequency would decrease largely due to a decrease in bareness (or an increase in vegetation 
cover) (Pu and Ginoux, 2017). There were no clear projected changes in other seasons or 
locations in Oregon. These projections compare the 2051–2100 average under a higher emissions 
scenario (RCP 8.5) with the 1861–2005 average. 
Another study found that wind erosion in Columbia Plateau agricultural areas is projected to 
decrease by mid-century under a lower emissions scenario (RCP 4.5) largely due to increases in 
biomass production, which retain the soil (Sharratt et al., 2015). The increase in vegetation cover 
in both studies is likely due to the fertilization effect of increased amounts of carbon dioxide in 
the atmosphere and warmer temperatures. Tillage practices may also influence the amount of soil 
available to winds. Therefore, no descriptions of future changing conditions are included in this 
report. 

  

Key Messages: 
Þ Limited research suggests that the risk of dust storms in summer would decrease in 

eastern Oregon under climate change in areas that experience an increase in vegetation 
cover from the carbon dioxide fertilization effect.  
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Increased Invasive Species Risk 
Warming temperatures, altered precipitation patterns, and increasing atmospheric carbon dioxide 
levels increase the risk for invasive species, insect and plant pests for forest and rangeland 
vegetation, and cropping systems.  
Warming and more frequent drought will likely lead to a greater susceptibility among trees to 
insects and pathogens, a greater risk of exotic species establishment, more frequent and severe 
forest insect outbreaks (Halofsky and Peterson, 2016), and increased damage by a number of 
forest pathogens (Vose et al., 2016). In Oregon and Washington, mountain pine beetle 
(Dendroctonus ponderosae) and western spruce budworm (Choristoneura freemani) are the most 
common native forest insect pests, and both have caused substantial tree mortality and 
defoliation over the past several decades (Meigs et al., 2015).16 
Climatic warming has facilitated the expansion and survival of mountain pine beetles, 
particularly in areas that have historically been too cold for the insect (Littell et al., 2013). 
Across the western United States, the time between generations among different populations of 
mountain pine beetles is similar; however, the amount of thermal units required to complete a 
generation cycle was significantly less for beetles at cooler sites (Bentz et al., 2014). Winter 
survival and faster generation cycles could be favored under future projections of decreases in 
the number of freeze days (Rawlins et al., 2016).17 Bark beetle outbreaks can interact with 
drought stress to influence fire hazard in forests in the years after the outbreak. Within the first 
four years after an outbreak when trees retain drying needles, “fire hazard has been found to 
increase as the proportion of the stand killed by bark beetles increases” (Halofsky et al., 2020). 
About five to ten years after an outbreak when snags remain standing, surface fire potential 
increases while crown fire potential decreases. However, one to several decades after an 
outbreak when snags have fallen and understory vegetation grows, fire hazard is generally lower 
(Halofsky et al., 2020). 
Western spruce budworm is a destructive defoliator that sporadically breaks out in interior 
Oregon Douglas-fir (Pseudotsuga menziesii) forests (Flower et al., 2014). An analysis of three 
hundred years of tree ring data reveals that outbreaks tended to occur near the end of a drought, 
when trees’ physiological thresholds had likely been reached. This analysis suggests that such 
outbreaks would likely intensify under the more frequent drought conditions that are projected 
for the future (Flower et al., 2014), unless increasing atmospheric carbon dioxide, which may 
enhance water use efficiency, mitigates drought stress.18 
More frequent rangeland droughts could facilitate invasion of non-native weeds as native 
vegetation succumbs to drought or wildfire cycles, leaving bare ground (Vose et al., 2016). 
Cheatgrass (Bromus tectorum L.), a lower nutritional quality forage grass, facilitates more 
frequent fires, which reduces the capacity of shrub steppe ecosystem to provide livestock forage 
and critical wildlife habitat (Boyte et al., 2016). Cheatgrass is a highly invasive species in the 
rangelands in the West that is projected to expand northward (Creighton et al., 2015) and remain 
stable or increase in cover in most parts of the Great Basin (Boyte et al., 2016) under climate 
change.19 

 
16	Verbatim	from	the	Third	Oregon	Climate	Assessment	Report	(Dalton	et	al.,	2017),	p.	49	
17	Verbatim	from	the	Third	Oregon	Climate	Assessment	Report	(Dalton	et	al.,	2017),	p.	49	
18	Verbatim	from	the	Third	Oregon	Climate	Assessment	Report	(Dalton	et	al.,	2017),	p.	49–50	
19	Verbatim	from	the	Third	Oregon	Climate	Assessment	Report	(Dalton	et	al.,	2017),	p.	70	
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Crop pests and pathogens may continue to migrate poleward under global warming as has been 
observed globally for several types since the 1960s (Bebber et al., 2013). Much remains to be 
learned about which pests and pathogens are most likely to affect certain crops as the climate 
changes, and about which management strategies will be most effective.20  
 
 

  

 
20	Verbatim	from	the	Third	Oregon	Climate	Assessment	Report	(Dalton	et	al.,	2017),	p.	67	

Key Messages: 
Þ Warming temperatures, altered precipitation patterns, and increasing atmospheric 

carbon dioxide levels increase the risk for invasive species, insect and plant pests for 
forest and rangeland vegetation, and cropping systems.   
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Loss of Wetland Ecosystems 
Wetlands play key roles in major ecological processes and provide a number of essential 
ecosystem services: flood reduction, groundwater recharge, pollution control, recreational 
opportunities, and fish and wildlife habitat, including for endangered species.21 Climate change 
stands to affect freshwater wetlands in Oregon through changes in the duration, frequency, and 
seasonality of precipitation and runoff; decreased groundwater recharge; and higher rates of 
evapotranspiration (Raymondi et al., 2013). 
Reduced snowpack and altered runoff timing may contribute to the drying of many ponds and 
wetland habitats across the Northwest.22 The absence of water or declining water levels in 
permanent or ephemeral wetlands would affect resident and migratory birds, amphibians, and 
other animals that rely on the wetlands (Dello and Mote, 2010). However, potential future 
increases in winter precipitation may lead to the expansion of some wetland systems, such as 
wetland prairies.23 
In Oregon’s western Great Basin, changes in climate would alter the water chemistry of fresh 
and saline wetlands affecting the migratory water birds that depend on them. Hotter summer 
temperatures would cause freshwater sites to become more saline making them less useful to 
raise young birds that haven’t yet developed the ability to process salt. At the same time, 
increased precipitation would cause saline sites to become fresher thereby decreasing the 
abundance of invertebrate food supply for adult water birds (Dello and Mote, 2010). 

 
  

 
21	Verbatim	from	the	Oregon	Climate	Change	Adaptation	Framework,	p.	62	
22	Verbatim	from	the	Climate	Change	in	the	Northwest	(Dalton	et	al.,	2013),	p.	53	
23	Verbatim	from	the	Climate	Change	in	the	Northwest	(Dalton	et	al.,	2013),	p.	53	

Key Messages: 
Þ Freshwater wetland ecosystems are sensitive to warming temperatures and altered 

hydrological patterns, such as changes in precipitation seasonality and reduction of 
snowpack. 
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Appendix 
Future Climate Projections Background 
Read more about emissions scenarios, global climate models, and uncertainty in the Climate 
Science Special Report, Volume 1 of the Fourth National Climate Assessment 
(https://science2017.globalchange.gov). 
 
Emissions Scenarios: https://science2017.globalchange.gov/chapter/4#section-2 
 
Global Climate Models & Downscaling: 
https://science2017.globalchange.gov/chapter/4#section-3 
 
Uncertainty: https://science2017.globalchange.gov/chapter/4#section-4 

Climate & Hydrological Data 
Statistically downscaled GCM output from the Fifth phase of the Coupled Model 
Intercomparison Project (CMIP5) served as the basis for future projections of temperature, 
precipitation, and hydrology variables. The coarse resolution of GCMs output (100–300 km) was 
downscaled to a resolution of about 6 km using the Multivariate Adaptive Constructed Analogs 
(MACA) method, which has demonstrated skill in complex topographic terrain (Abatzoglou and 
Brown, 2012). The MACA approach utilizes a gridded training observation dataset to 
accomplish the downscaling by applying bias-corrections and spatial pattern matching of 
observed large-scale to small-scale statistical relationships. (For a detailed description of the 
MACA method see: https://climate.northwestknowledge.net/MACA/MACAmethod.php.)  

This downscaled gridded meteorological data (i.e., MACA data) is used as the climate inputs to 
an integrated climate-hydrology-vegetation modeling project called Integrated Scenarios of the 
Future Northwest Environment (https://climate.northwestknowledge.net/IntegratedScenarios/). 
Snow dynamics were simulated using the Variable Infiltration Capacity hydrological model 
(VIC version 4.1.2.l; (Liang et al., 1994) and updates) run on a 1/16th x 1/16th (6 km) grid.  

Simulations of historical and future climate for the variables maximum temperature (tasmax), 
minimum temperature (tasmin), and precipitation (pr) are available at the daily time step from 
1950 to 2099 for 20 GCMs and 2 RCPs (i.e., RCP4.5 and RCP8.5). Hydrological simulations of 
snow water equivalent (SWE) are only available for the 10 GCMs used as input to VIC. Table 11 
lists all 20 CMIP5 GCMs and indicates the subset of 10 used for hydrological simulations. Data 
for all the models available was obtained for each variable from the Integrated Scenarios data 
archives in order to get the best uncertainty estimates.  

All simulated climate data and the streamflow data have been bias-corrected using quantile-
mapping techniques. Only SWE is presented without bias correction. Quantile mapping adjusts 
simulated values by creating a one-to-one mapping between the cumulative probability 
distribution of simulated values and the cumulative probability distribution of observed values. 
In practice, both the simulated and observed values of a variable (e.g., daily streamflow) over the 
some historical time period are separately sorted and ranked and the values are assigned their 
respective probabilities of exceedence. The bias corrected value of a given simulated value is 
assigned the observed value that has the same probability of exceedence as the simulated value. 
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Table 11 The 20 CMIP5 GCMs used in this project. The subset of 10 CMIP5 GCMs used in the Integrated Scenarios: 
Hydrology dataset are noted with asterisks. 

Model Name Modeling Center 

BCC-CSM1-1 
Beijing Climate Center, China Meteorological Administration 

BCC-CSM1-1-M* 

BNU-ESM College of Global Change and Earth System Science, Beijing Normal 
University, China 

CanESM2* Canadian Centre for Climate Modeling and Analysis 

CCSM4* National Center for Atmospheric Research, USA 

CNRM-CM5* National Centre of Meteorological Research, France 

CSIRO-Mk3-6-0* 
Commonwealth Scientific and Industrial Research 
Organization/Queensland Climate Change Centre of Excellence, 
Australia 

GFDL-ESM2G 
NOAA Geophysical Fluid Dynamics Laboratory, USA 

GFDL-ESM2M 

HadGEM2-CC* 
Met Office Hadley Center, UK 

HadGEM2-ES* 

INMCM4 Institute for Numerical Mathematics, Russia 

IPSL-CM5A-LR 

Institut Pierre Simon Laplace, France IPSL-CM5A-MR* 

IPSL-CM5B-LR 

MIROC5* Japan Agency for Marine-Earth Science and Technology, Atmosphere 
and Ocean Research Institute (The University of Tokyo), and National 
Institute for Environmental Studies 

MIROC-ESM 

MIROC-ESM-CHEM 

MRI-CGCM3 Meteorological Research Institute, Japan 

NorESM1-M* Norwegian Climate Center, Norway 

 
The historical bias in the simulations is assumed to stay constant into the future; therefore the 
same mapping relationship developed from the historical period was applied to the future 
scenarios. For MACA, a separate quantile mapping relationship was made for each non-
overlapping 15-day window in the calendar year. For streamflow, a separate quantile mapping 
relationship was made for each calendar month.  

Hydrology was simulated using the Variable Infiltration Capacity hydrological model (VIC; 
Liang et al. 1994) run on a 1/16th x 1/16th (6 km) grid. To generate daily streamflow estimates, 
runoff from VIC grid cells was then routed to selected locations along the stream network using 
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a daily-time-step routing model. Where records of naturalized flow were available, the daily 
streamflow estimates were then bias-corrected so that their statistical distributions matched those 
of the naturalized streamflows.  

The wildfire danger day metric was computed using the same MACA climate variables to 
compute the 100-hour fuel moisture content according to the equations in the National Fire 
Danger Rating System. 

Smoke Wave Data 
Abstract from Liu et al. (2016): 
Wildfire can impose a direct impact on human health under climate change. While the potential 
impacts of climate change on wildfires and resulting air pollution have been studied, it is not 
known who will be most affected by the growing threat of wildfires. Identifying communities 
that will be most affected will inform development of fire manage- ment strategies and disaster 
preparedness programs. We estimate levels of fine particulate matter (PM2.5) directly attributable 
to wildfires in 561 western US counties during fire seasons for the present-day (2004–2009) and 
future (2046–2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical 
transport model. Future estimates are obtained under a scenario of moderately increasing 
greenhouse gases by mid-century. We create a new term “Smoke Wave,” defined as ≥2 
consecutive days with high wildfire-specific PM2.5, to describe episodes of high air pollution 
from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from 
future high wildfire pollution events. For 2004–2009, on days exceeding regulatory PM2.5 
standards, wildfires contributed an average of 71.3 % of total PM2.5. Under future climate 
change, we estimate that more than 82 million individuals will experience a 57 % and 31 % 
increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, 
Western Oregon and the Great Plains are likely to suffer the highest exposure to wildfire smoke 
in the future. Results point to the potential health impacts of increasing wildfire activity on large 
numbers of people in a warming climate and the need to establish or modify US wildfire 
management and evacuation programs in high-risk regions. The study also adds to the growing 
literature arguing that extreme events in a changing climate could have significant consequences 
for human health.  

Data can be accessed here: https://khanotations.github.io/smoke-map/ 
For the DLCD project, we looked at the variables “Total # of SW days in 6 yrs” and “Average 
SW Intensity”. The first variable tallies all the days within each time period in which the fine 
particulate matter exceeded the threshold defined as the 98th quantile of the distribution of daily 
wildfire-specific PM2.5 values in the modeled present-day years, on average across the study area. 
The second variable computes the average concentration of fine particulate matter across 
identified “smoke wave” days within each time period. Liu et al. (2016) used 15 GCMs from the 
Third Phase of the Coupled Model Intercomparison Project (CMIP3) under a medium emissions 
scenario (SRES-A1B). The data site only offers the multi-model mean value (not the range), 
which should be understood as the aggregate direction of projected change rather than the actual 
number expected. 
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